Class Decomposition via Clustering:
A New Framework for Low-Variance Classifiers

Ricardo Vilalta, Murali-Krishna Achari, and Christoph F. Eick
Department of Computer Science
University of Houston
Houston TX, 77204-3010, USA
{vilalta, amkchari, ceick} @cs.uh.edu

Abstract

We propose a pre-processing step to classification that
applies a clustering algorithm to the training set to dis-
cover local patterns in the attribute or input space. We
demonstrate how this knowledge can be exploited to en-
hance the predictive accuracy of simple classifiers. Our fo-
cus is mainly on classifiers characterized by high bias but
low variance (e.g., linear classifiers); these classifiers ex-
perience difficulty in delineating class boundaries over the
input space when a class distributes in complex ways. De-
composing classes into clusters makes the new class distri-
bution easier to approximate and provides a viable way to
reduce bias while limiting the growth in variance. Experi-
mental results on real-world domains show an advantage
in predictive accuracy when clustering is used as a pre-
processing step to classification.

1 Introduction

Our study explores how classification algorithms can
benefit from class density information that is obtained us-
ing clustering. Such information can be exploited to im-
prove the quality of the decision boundaries during classifi-
cation and enhance the prediction accuracy of simple classi-
fiers. We demonstrate how using classification and cluster-
ing techniques in conjunction addresses key issues in learn-
ing theory (e.g., bias vs variance) and provides an attractive
new family of classification models.

Our goal is to exploit the information derived from a
clustering algorithm to increase the complexity of sim-
ple classifiers characterized by low variance and high bias.
These algorithms, commonly referred to as model-based or
parametric-based, encompass a small class of approximat-
ing functions and exhibit limited flexibility in their deci-
sion boundaries. Examples include linear classifiers, prob-

abilistic classifiers based on the attribute-independence as-
sumption (e.g., Naive Bayes), and single logical rules. The
guestion we address is how to increase the complexity of
these classifiers to trade-off bias for variance in an effective
manner. Since these models start off with simple represen-
tations, increasing their complexity is expected to improve
their generalization performance while still retaining their
ability to output models amenable to interpretation.

Our approach extends previous work [6] in which we
increase the degree of complexity of the decision bound-
aries of a simple classifier by augmenting the number of
boundaries per class. The idea is to transform the classi-
fication problem by decomposing each class into clusters.
By relabelling the examples covered by each cluster with a
new class label, the simple classifier generates an increased
number of boundaries per class, and is then armed to cope
with complex distributions where classes cover different re-
gions of the input space. In this paper we add a new step
in which we explore the space of possible new class assign-
ments in a greedy manner maximizing predictive accuracy.

We test our methodology on twenty datasets from the
University of California at Irvine repository, using two sim-
ple classifiers: Naive Bayes and a Support Vector Machine
with a polynomial kernel of degree one. Empirical results
support our goal statement that pre-identifying local pat-
terns in the data through clustering is a helpful tool in im-
proving the performance of simple classifiers.

The paper organization is described next. Section 2 in-
troduces background information and our problem state-
ment. Section 3 details our class decomposition approach.
Section 4 reports our empirical results. Finally, Section 5
states our summary and future work.

2 Problem Statement

Let (X7, Xo,- -+, X,,) be an n-component vector-valued
random variable, where each X; represents an attribute or

feature; the space of all possible attribute vectors is called
the attribute or input space X. Let {y1,y2, -, yx} be the
possible classes, categories, or states of nature; the space of
all possible classes is called the output space). A classifier
receives as input a set of training examples 7' = {(x,y)},
where x = (z1, 2, -+, x,) IS a Vector or point in the input
space (x; is the value of attribute X;) and y is a point in the
output space. The outcome of the classifier is a function h
(or hypothesis) mapping the input space to the output space,
h: X —).

2.1 Simple Discriminant Functions

We consider the case where a classifier defines a discrim-
inant function for each class g;(x), j = 1,2,---,k and
chooses the class corresponding to the discriminant func-
tion with highest value (ties are broken arbitrarily):

h(x) = ym iff gm(x) = g;(x) 1)
Possibly, the simplest case is that of a linear discrimi-

nant function, where the approximation is based on a linear
model:

g5(x) = wo + Z Wi T;)
i=1

where each w;,0 < 7 < n, is a coefficient that must be
learned by the classification algorithm.

We will also consider probabilistic classifiers where
the discriminant functions are proportional to the posterior
probabilities of a class given the input vector x, P(y;|x).
The classifier, also known as Naive Bayes, assumes feature
independence given the class:

9;(x) = P(y;) 1L P(z:]y;) ©)
where P(y;) is the a priori probability of class y;, and
IT? P(x;|y;) is a simple product approximation of P(x|y,),
called the likelihood or class-conditional probability.

2.2 The Bias-Variance Trade-Off

Simple discriminant functions tend to output poor func-
tion approximations when the data distributes in complex
ways. Our goal is to increase the complexity of simple clas-
sifiers to obtain better function approximations. Since our
training set comprises a limited number of examples and we
do not know the form of the true target distribution, our goal
is inevitably subject to the bias-variance dilemma in statis-
tical inference [4, 5]. The dilemma is based on the fact that
prediction error can be decomposed into a bias and a vari-
ance component?; ideally we would like to have classifiers

1A third component, the irreducible error or Bayes error, cannot be
eliminated.

X1
X2

X1

Figure 1. (top) A high-order polynomial im-
proves the classification of a linear classi-
fier at the expense of increased variance.
(bottom) Increasing the number of linear dis-
criminants guided by local patterns increases
complexity with lower impact on variance.

with low bias and low variance but these components are
inversely related.

Our problem statement can be rephrased as follows: how
can we decrease the bias (i.e., increase the complexity) of
our simple classifiers without drastically increasing the vari-
ance component? Notice our goal sets forth in a direction
orthogonal to combination methods like bagging [2] and
boosting [3] where the goal is to reduce the variance compo-
nent in generalization error by voting on classifiers obtained
from variants of the training data.

2.3 Increasing Complexity Through Additional
Boundaries

Our solution is to exploit information about the distribu-
tion of examples through a pre-processing step that iden-
tifies natural clusters in data. As an illustration, Figure 1
shows a two dimensional input space with two classes (pos-
itive + and negative —). The distribution of examples pre-
cludes a simple linear classifier attaining good performance
(Figure 1-top, bold line). One way to increase the complex-
ity of the classifier is to enlarge the original space of linear
combinations to allow for more flexibility on the decision
boundaries, for example by adding higher order polynomi-
als (Figure 1-top, dashed line). But this comes at the ex-
pense of increased variance and possibly data overfitting.

Alternatively, one can retain the same space of linear
functions but increase the number of decision boundaries

per class (Figure 1-bottom). This increases the complex-
ity of the classifier but with less impact on variance. The
trick lies on identifying regions of high class density within
subsets of examples of the same class which we accomplish
through clustering. The next sections provide a detail de-
scription of our approach.

3 Class Decomposition via Clustering

Our solution comprises three steps: A) a decomposition
of classes into clusters; B) a search for an optimal class as-
signment configuration; and C) a function mapping predic-
tions to the original set of class labels. We explain each step
in turn.

A. Class Decomposition. Our first step pre-processes the
training data by clustering examples that belong to the same
class. We proceed by first separating dataset 7" into sets of
examples of the same class. That is 7" is separated into dif-
ferent sets of examples T' = {T; }, where each T'; comprises
all examples in 7" labelled with class y;, T; = {(x,y) €
Tly = y;}.

For each set T'; we apply a clustering algorithm C' to find
sets of examples (i.e., clusters) grouped together according
to some distance metric over the input space. Let {c]} be
the set of such clusters. We map the set of examples in T}
into a new set 7"/ by renaming every class label to indicate
not only the class but also the cluster to which each example
belongs. One simple way to do this is by making each class
label a pair (a,b), where the first element represents the
original class and the second element represents the clus-
ter that the example falls into. In that case, T} = {(x,y})},
where y’; = (y;, 1) whenever example x is assigned to clus-

ter CZ Finally the new dataset 7" is simply the union of all
sets of examples of the same class relabelled according to
the cluster to which each example belongs, 77 = U?:l 17

An illustration of the transformation above is shown in
Figure 2. We assume a two-dimensional input space where
examples belong to either class positive (+) or negative (—).
Let’s suppose the clustering algorithm separates class pos-
itive into two clusters, while class negative is grouped into
one single cluster. The transformation relabels every exam-
ple to encode class and cluster label. As a result, dataset 7"
has now three different classes.

B. A Search for Class Assignments. Increasing the num-
ber of classes according to the number of induced clusters
may result in an excessive number of classes. Our second
step extends previous work [6] by exploring the space of
possible ways to merge clusters derived from the first step.
Following the same notation as before, a class label will be
a pair (a, b), where the first element represents the original
class label and the second element represents the cluster that
the example falls into; but the difference now is that two or

{xy)ly' = (+.2)}

”

Figure 2. The mapping process relabels ex-
amples to encode both class and cluster.

{&xy)ly =1}

{GY)ly = (1)}

X1

more clusters may correspond to the same second element
(i.e., element b), which can be interpreted as having clusters
merged into a single cluster.

Our goal is to explore the space of possible ways to
merge clusters obtained during the first step, until we find
a configuration that maximizes predictive accuracy (over a
validation set different from the training set). The space of
possible configurations corresponds to the space of all sub-
sets of clusters, with each subset being assigned the same
cluster index (i.e., being assigned the same class label). Ob-
viously one cannot explore this space exhaustively. If class
y; is decomposed into n; clusters, the number of different
configurations has an upper bound of @(2"7). To avoid an
exhaustive search we follow a heuristic greedy approach.
The search starts by evaluating predictive accuracy assum-
ing each cluster is mapped to a separate index. Next we
start looking for pairs of clusters (e.g. {c],c}}) and com-
pute predictive accuracy assuming the two clusters of each
pair are mapped to the same index. We then take those pairs
for which predictive accuracy increased and rank them ac-
cordingly. To enforce a mutually exclusive list of clusters
we prune every cluster pair where at least one cluster ap-
pears on another pair with higher rank. The algorithm keep
merging clusters until no new cluster sets of higher cardi-
nality can be produced from the cluster sets in the previous
iteration. At that point we assign the clusters on each subset
the same index (i.e., the same class label).

C. Classification of Examples. Our last step serves to as-
sess the performance of the linear classifier over the ex-
tended output space. This is necessary during the search
over the space of subsets of clusters, and while estimat-
ing final predictive accuracy. During learning, the simple
classifier is trained over dataset 7" producing a hypothesis
h’ mapping points from input space X to the new output
space). During classification, hypothesis h’ will output
a prediction consisting of a class label and a cluster label,
KW (x) = (a,b). To know the actual prediction in the orig-
inal output space) we simply remove the cluster index.

Essentially, we predict class label y; whenever example x
is assigned to any of the clusters (or subsets of clusters) of
class y;.

4 Experiments

Our experiments include as simple classifiers a naive
probabilistic classifier that assumes feature independence
given the class (known as Naive Bayes), and a support vec-
tor machine (SVM) with a polynomial of degree one as the
kernel function. The clustering algorithm follows the Ex-
pectation Maximization (EM) technique. The number of
clusters is estimated using cross-validation. On each run
we use 50% of the examples for training, 25% for valida-
tion, and 25% for testing. Reports on accuracy are the aver-
age of ten runs (over the testing set). An asterisk at the top
right of a number implies the difference is significant at the
p = 0.01 level (using a ¢-student distribution). Our datasets
can be obtained from the University of California at Irvine
Repository [1]

4.1 Results

Table 1 displays our results. The second column reports
the mean accuracy of Naive Bayes, and the third column re-
ports the increase in accuracy using our proposed approach.
The fourth and fifth columns show the corresponding per-
formance and increase in accuracy for the linear classifier.
There is a clear gain in performance with the probabilistic
classifier. The average increase in accuracy for Naive Bayes
is 4.56%. There is statistically significant enhancement met
in eight domains. No performance improvement indicates
our algorithm has merged all clusters of each class into a
single cluster; such configuration is equivalent to the orig-
inal dataset and thus produces no change in performance.
Compared to previous work [6], we find that merging clus-
ters into single classes (Step 2, Section 3) is indeed effec-
tive, but the need for a validation step reduces the number of
available training examples, resulting in some performance
impact.

The average increase in accuracy for the linear classifier
is of 0.89%. Performance is almost the same between our
proposed approach and the standard version, except for two
domains (vehicle and vowel) where the difference is signif-
icant. In some cases there is a decrease in performance (not
significant), indicating an apparent increase in accuracy on
the validation set, but an actual decrease on the testing set.

5 Summary and Future Work
We propose an approach to improve the accuracy of sim-

ple classifiers through a pre-processing step that applies a
clustering algorithm over examples belonging to the same

Table 1. Predictive accuracy on real-world do-
mains.

Domain Naive A Acc Linear A Acc
Bayes Classifi er

Anneal 82.21 9.98* 88.13 0.42
Balance-Scale 89.88 0.0 87.83 0.0
Breast-Cancer 73.52 0.38 72.96 0.63
Breast-W 96.19 0.16 96.87 0.0
Colic 79.44 1.92 83.39 —0.22
Credit-a 77.87 3.71* 85.04 0.15
Credit-g 78.17 0.0 76.02 —-0.23
Diabetes 76.81 0.0 78.07 0.0
Heart-c 83.40 0.44 85.96 —0.53
Heart-h 86.84 0.0 83.48 0.61
Hypothyroid 90.22 1.02 72.88 0.63
Letter 59.68 1.04* 56.23 0.05
Mushroom 92.91 6.45* 99.93 0.04
Segment 80.18 8.57* 91.88 0.0
Sick 86.36 4.82* 92.19 0.0
Soybean 90.17 0.00 94.11 0.00
Splice 96.88 0.00 93.99 0.00
Vehicle 42.52 25.24* 66.86 4.88*
Vote 89.17 6.02* 97.49 —0.09
Vowel 59.92 21.53* 72.17 11.53*

class. We demonstrate the resulting knowledge can be ex-
ploited to improve the quality of the class decision bound-
aries. Our algorithm explores the space of possible class
assignments over the induced clusters searching to maxi-
mize accuracy. Our experiments show that our proposed
approach results in either equal or increased accuracy on
most of the real-world domains used for analysis.

Future work will try to explain why performance im-
provement is evident in the probabilistic classifier but not in
the linear classifier. We will also look for ways to improve
the computational cost of finding the best class-assignment
configuration.

References

[1] C. Blake and M. C.J. UCI, Repository of machine learning
databases. University of California, Irvine, Dept. of Informa-
tion and Computer Sciences, 1998.

[2] L. Breiman. Bagging predictors. Machine Learning Journal,
24:123-140, 1996.

[3] Y. Freund and R. E. Schapire. Experiments with a new boost-
ing algorithm. pages 148-156, 1996.

[4] S. Geman, E. Bienenstock, and R. Doursat. Neural networks
and the bias/variance dilemma. Neural Computation, pages
1-58, 1992.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The elements of
statistical learning; data mining, inference, and prediction.
Springer-Verlag, 2001.

[6] R. Vilalta and I. Rish. A decomposition of classes via clus-
tering to explain and improve naive bayes. 14th European
Conference on Machine Learning, 2003.

